top of page

References

1. Cooper, D. M. F.; Crossthwaite, A. J. Higher-Order Organization and Regulation of Adenylyl Cyclases. Trends Pharmacol. Sci. 2006, 27, 426−431.

2. Herbst, S.; Masada, N.; Pfennig, S.; Ihling, C. H.; Cooper, D. M. F.; Sinz, A. Structural Insights into Calmodulin/Adenylyl Cyclase 8 Interaction. Anal. Bioanal. Chem. 2013, 405, 9333−9342.

3. Masada, N.; Schaks, S.; Jackson, S. E.; Sinz, A.; Cooper, D. M. F. Distinct Mechanisms of Calmodulin Binding and Regulation of Adenylyl Cyclases 1 and 8. Biochemistry 2012, 51, 7917−7929.

4. Masada, N.; Ciruela, A.; MacDougall, D. A.; Cooper, D. M. F. Distinct Mechanisms of Regulation by Ca2+/Calmodulin of Type 1 and 8 Adenylyl Cyclases Support Their Different Physiological Roles. J. Biol. Chem. 2009, 284, 4451−4463.

5. Defer, N.; Best-Belpomme, M.; Hanoune, J. Tissue Specificity

and Physiological Relevance of Various Isoforms of Adenylyl Cyclase. Am. J. Physiol.: Renal Physiol. 2000, 279, F400−F416.

6. Zhuo, M. Targeting Neuronal Adenylyl Cyclase for the Treatment of Chronic Pain. Drug Discov. Today 2012, 17, 573−582.

7. Cali, J. J.; Zwaagstra, J. C.; Mons, N.; Cooper, D. M.; Krupinski, J. Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J. Biol. Chem. 1994, 269, 12190−12195.

8. Fagan, K. A.; Mahey, R.; Cooper, D. M. F. Functional Co- Localization of Transfected Ca2+-Stimulable Adenylyl Cyclases with Capacitative Ca2+ Entry Sites. J. Biol. Chem. 1996, 271, 12438−12444.

9. Wei, F.; Qiu, C.-S.; Kim, S. J.; Muglia, L.; Maas, J. W.; Pineda, V. V.; Xu, H.-M.; Chen, Z.-F.; Storm, D. R.; Muglia, L. J.; Zhou, M. Genetic Elimination of Behavioral Sensitization in Mice Lacking Calmodulin-Stimulated Adenylyl Cyclases. Neuron 2002, 36, 713−726.

10. Corder, G.; Doolen, S.; Donahue, R. R.; Winter, M. K.; Jutras, B. L.; He, Y.; Hu, X.; Wieskopf, J. S.; Mogil, J. S.; Storm, D. R.; Wang, Z. J.; McCarson, K. E.; Taylor, B. K. Constitutive μ-Opioid Receptor Activity Leads to Long-Term Endogenous Analgesia and Dependence. Science 2013, 341, 1394−1399.

11. Wong, S. T.; Athos, J.; Figueroa, X. A.; Pineda, V. V.; Schaefer, M. L.; Chavkin, C. C.; Muglia, L. J.; Storm, D. R. Calcium-Stimulated Adenylyl Cyclase Activity Is Critical for Hippocampus-Dependent Long-Term Memory and Late Phase LTP. Neuron 1999, 23, 787−798.

12. Vadakkan, K. I.; Wang, H.; Ko, S. W.; Zastepa, E.; Petrovic, M. J.; Sluka, K. A.; Zhuo, M. Genetic Reduction of Chronic Muscle Pain in Mice Lacking Calcium/Calmodulin-Stimulated Adenylyl Cyclases. Mol. Pain 2006, 2, 1744−8069.

13. Soto-Velasquez, M.; Hayes, M. P.; Alpsoy, A.; Dykhuizen, E. C.; Watts, V. J. A Novel CRISPR/Cas9-Based Cellular Model to Explore Adenylyl Cyclase and CAMP Signaling. Mol. Pharmacol. 2018, 94, 963−972.

14. Scott, J. A.; Soto-Velasquez, M.; Hayes, M. P.; LaVigne, J. E.; Miller, H. R.; Kaur, J.; Ejendal, K. F. K.; Watts, V. J.*; Flaherty, D. P.* Optimization of a pyrimidinone series for selective inhibition of Ca2+/calmodulin-stimulated adenylyl cyclase 1 activity for treatment of chronic pain. Journal of Medicinal Chemistry, 2022, 65, 4667 - 4686.

15. Ishikawa, Minoru, and Yuichi Hashimoto. "Improving the water-solubility of compounds by molecular modification to disrupt crystal packing." The Practice of Medicinal Chemistry. Academic Press, 2015. 747-765.

16. Ishikawa, Minoru, and Yuichi Hashimoto. "Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry." Journal of medicinal chemistry 54.6 (2011): 1539-1554.

bottom of page